Udemy限免:谷歌认证专业机器学习工程师 | Udemy Coupon | Udemy优惠码 | Udemy免费课程

Google Certified Professional Machine Learning Engineer
Google认证专业机器学习工程师,ML算法大师、数据建模、TensorFlow Cloud ML服务-Google ML认证的全面途径。 | Udemy付费课程限时免费 | Udemy Coupon | Udemy优惠码 | Udemy免费课程

Udemy课程介绍

Translate business challenges into ML use cases

Choose the optimal solution (ML vs non-ML, custom vs pre-packaged)

Define how the model output should solve the business problem

Identify data sources (available vs ideal)

Define ML problems (problem type, outcome of predictions, input and output formats)

Define business success criteria (alignment of ML metrics, key results)

Identify risks to ML solutions (assess business impact, ML solution readiness, data readiness)

Design reliable, scalable, and available ML solutions

Choose appropriate ML services and components

Design data exploration/analysis, feature engineering, logging/management, automation, orchestration, monitoring, and serving strategies

Evaluate Google Cloud hardware options (CPU, GPU, TPU, edge devices)

Design architectures that comply with security concerns across sectors

Explore data (visualization, statistical fundamentals, data quality, data constraints)

Build data pipelines (organize and optimize datasets, handle missing data and outliers, prevent data leakage)

Create input features (ensure data pre-processing consistency, encode structured data, manage feature selection, handle class imbalance, use transformations)

Build models (choose framework, interpretability, transfer learning, data augmentation, semi-supervised learning, manage overfitting/underfitting)

Train models (ingest various file types, manage training environments, tune hyperparameters, track training metrics)

Test models (conduct unit tests, compare model performance, leverage Vertex AI for model explainability)

Scale model training and serving (distribute training, scale prediction service)

Design and implement training pipelines (identify components, manage orchestration framework, devise hybrid or multicloud strategies, use TFX components)

Implement serving pipelines (manage serving options, test for target performance, configure schedules)

Track and audit metadata (organize and track experiments, manage model/dataset versioning, understand model/dataset lineage)

Monitor and troubleshoot ML solutions (measure performance, log strategies, establish continuous evaluation metrics)

Tune performance for training and serving in production (optimize input pipeline, employ simplification techniques)

如手机上无法跳转 请在电脑上尝试 | Udemy限时免费课程

澳洲求职|澳洲工作不知道学什么课程或技能证书?Udemy限免|Udemy付费课程限时免费
Udemy是面向所有级别学生的在线学习平台。截至2020年5月,该平台有超过5000万正在学习该平台的学生。已经有超过2.95亿的udemy课程注册。它是获得在线课程的最佳场所之一。从Udemy完成课程后,您还将获得结业证书。

Udemy优惠券的目的是什么? 通过在线课程进行自我教育是每个人都可以利用的绝佳机会。但是,涵盖您要学习的所有主题可能会变得昂贵。这就是为什么我们通过发布最新的Udemy优惠券和促销代码以轻松利用免费的Udemy课程来获得优惠的原因。

只需通过newskycn.com本站udemy链接访问,coupon会即刻生效,0元就读udemy付费课程
Udemy限免|Udemy付费课程限时免费:通过本站udemy链接访问,coupon即刻生效,0元就读udemy付费课程

/

Related Posts

发表回复